LoRSCo: Long Reads Self-Correction

Pierre Morisse !, Camille Marchet 2, Antoine Limasset?,
Arnaud Lefebvre ', Pierre Peterlongo 3, Thierry Lecroq '

"Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France.
2Lille Univ, CNRS, Inria, CRIStAL, Lille 59000, France.
3Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France.

SeqBio 2018
November 20, 2018

c Oljtj
RUNIVERSITE S versits ;
DE ROUEN Y GRISAL (g |RISA Bl

..........



o liti Introduction Workflow Experiments Conclusion
S ©00000000 000000000000000000000 0000 0000000

@ Introduction

RUNIVERSITE
DE ROUEN




Oliti Introduction Workflow Experiments Conclusion
S 0®0000000 000000000000000000000 0000 0000000

Introduction

@ 2010: Inception of third generation sequencing technologies
@ Two main technologies: Pacific Biosciences and Oxford Nanopore

@ Sequencing of much longer reads, tens of kbps on average, up to
882kb

@ Expected to solve various problem in the genome assembly field
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Introduction

@ Long reads (LR) are very noisy (10-30% error rate)
@ Display complex error profiles (errors are mostly indels)

@ Efficient error correction is mandatory

@ Two main approaches: hybrid correction and self-correction
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Introduction
Hybrid correction
@ First efficient approach for LR error correction
@ Makes use of complementary short reads (SR) data

@ Different approaches: Alignment of SRs to the LRs, use of a De
Bruijn graph (DBG), ...

@ Particularly useful on old sequencing experiments (very high
error rates)
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Introduction
Self-correction
@ Corrects the LRs solely based on the information they contain
@ Third generation sequencing technologies evolve fast
@ Error rates of the LRs now reach 10-12% on average

@ Error correction still needed

@ Self-correction is now a viable alternative
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Introduction

Self-correction

State-of-the-art: Two main approaches

@ Compute overlaps between the LRs

© Build a DBG from solid k-mers of the LRs (LoRMA
[Salmela et al., 2017])
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Introduction

Self-correction

@ Overlapping can be performed via:

o Mapping (Canu [Koren et al., 2017], MECAT [Xiao et al., 2017])

o Alignment (PBDAGCon [Chin et al., 2013], daccord
[Tischler and Myers, 2017])

@ Two main approaches are then used
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Introduction

Multiple alignment

@ Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus
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Multiple alignment

@ Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT Ry
ACAAGGGT R

ACCAAGGT R1
ACCRA..T

Morisse et al. LoRSCo
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Introduction
Multiple alignment De Bruijn graph

@ Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGET Ry
ACAAGGGT  Rp

ACCAAGGT R1
ACCAA..T  Rg

@ Divide the alignments into
small windows

@ Correct the windows
independently with DBGs

Morisse et al.
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De Bruijn graph
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@ Divide the alignments into
small windows

@ Correct the windows
independently with DBGs

.GATCGGG. . TAT . TGCCCGTGTTTATGCGTGTG Ry
TGTTCAGGCAAATATG. . . GAAACAAGGCCTG. . Rz
GAT. .CGGGTATTGCCCGTGTTTATGCGTG. . TG Ry
TATTTCTG. .AT.GCGC.TGACTTTTCTTGGCAG R3
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@ Divide the alignments into
small windows

@ Correct the windows
independently with DBGs

.GATCGGG. . TAT . TGCCCGTGTTTATGCGIGIG Ry
TGTTCAGGCAAATATG.|. . GAAACAAGGCCTG. . Rz
GAT. .CGGGTATTGCCCGTGTTTATGCGTG. . TG Ry
TATTTCTG. .AT.GCGC. TGACTTTTCTTGGCAG R3

Morisse et al.
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Introduction

Contribution

@ We introduce LoRSCo, a new self-correction method combining
both previous strategies:

@ LRs are overlapped via a mapping strategy

Alignments are divided into windows

Windows consensus are computed using DAGs

Consensus is polished with the help of local DBGs

Compared to SOTA: better throughput, comparable quality

W
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Pre-treatment

Overlap the long reads

Via mapping, with Minimap2 [Li, 2018]
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First step: Retrieve alignment pile

Retrieve overlapping long reads
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First step: Retrieve alignment pile

Get the alignment pile

A
Ay Rz
Ry As
Rs Rs
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First step: Retrieve alignment pile

Trim the alignment pile

A
Ry Re
Ry Ay
Rs Rs
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First step: Retrieve alignment piles

Trim the alignment pile

A
R1 HZ
Ha H4
Rs Re
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A window w = (beg, end) is a "factor” of an alignment pile
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Second step: Divide piles into windows

Definition

A window w = (beg, end) is a "factor” of an alignment pile

Example
A beg end
Ry ‘ ; R
Rs — Ru
R5 ‘ ‘ RS
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Second step: Divide piles into wmdows

For correction, we will only consider windows w = (beg, end) such as:

@ end—beg+1=1
@ Vi beg < i< end, iis covered by at least ¢ reads
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Second step: Divide piles into windows

For correction, we will only consider windows w = (beg, end) such as:
@ end—beg+1=1

@ Vi beg < i< end, iis covered by at least ¢ reads

Example
On the previous example, with ¢ = 4:

A\

A ——————  ———
P e e &,
Rsl | | | | | | | | | :He
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Third step: Compute consensus of a window

@ We consider the subsequences of reads A, Ry, Ry, ... included in
the window

@ We call the subsequence of read A the template sequence

@ We call the subsequences of other reads s; such as s; € R;
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Third step: Compute consensus of a window

1. Remove bad sequences

@ Start with a list containing the template

@ Viif sj shares n solid, collinear k-mers with the template, add s;
to the list
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Third step: Compute consensus of a window

1. Remove bad sequences
@ Start with a list containing the template

@ Viif sj shares n solid, collinear k-mers with the template, add s;
to the list

Example (with solid =2 and n = 2)

template
——
list = {template}
—— S
S3
v
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Third step: Compute consensus of a window

1. Remove bad sequences

@ Start with a list containing the template

@ Viif s; shares n solid, collinear k-mers with the template, add s;
to the list

Example (with solid =2 and n = 2)

template
S1
list = {template, s3 }

S2

——— S

v
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Third step: Compute consensus of a window

2. Compute consensus

@ Only consider the sequences of the list
@ Compute multiple sequence alignment (MSA) of these sequences

@ Compute consensus from the MSA (from the DAG)

@ = POA [Lee et al., 2002]
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Third step: Compute consensus of a window

POA (Partial Order Alignment) |

@ Multiple sequence alignment strategy based on partial order
graphs

@ Two interests:
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Third step: Compute consensus of a window

POA (Partial Order Alignment) |

@ Multiple sequence alignment strategy based on partial order
graphs

@ Two interests:

@ Computes actual multiple sequence alignment
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Third step: Compute consensus of a window

POA (Partial Order Alignment)

@ Multiple sequence alignment strategy based on partial order
graphs

@ Two interests:

@ Computes actual multiple sequence alignment

@ Directly builds the DAG representing the multiple alignment

I RUNIVERSITE

Morisse et al. LoRSCo 23/41



O liti Introduction Workflow Experiments Conclusion
S 000000000 0000000000000e0000000 0000 0000000

Third step: Compute consensus of a window

Workflow:
@ Start with a graph only containing the first sequence

@ Insert new sequences with a generalization of the
Smith-Waterman algorithm
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Third step: Compute consensus of a window

Workflow:
@ Start with a graph only containing the first sequence

@ Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example
Computing alignment of CGATTACG and CGCTTAT
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Third step: Compute consensus of a window

Workflow:
@ Start with a graph only containing the first sequence

@ Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example
Computing alignment of CGATTACG and CGCTTAT
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Third step: Compute consensus of a window

Workflow:
@ Start with a graph only containing the first sequence

@ Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example
Computing alignment of CGATTACG and CGCTTAT

O@?GOOGG
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Third step: Compute consensus of a window

Workflow:
@ Start with a graph only containing the first sequence

@ Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example
Computing alignment of CGATTACG and CGCTTAT

O@?ﬂﬁ@@@
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Third step: Compute consensus of a window

Workflow:
@ Start with a graph only containing the first sequence

@ Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example
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Third step: Compute consensus of a window

Segmentation strategy

@ In practice, we use windows of a few hundred bases
@ POA is time consuming

@ We developed a segmentation strategy

@ Compute MSA and consensus for smaller sequences => faster
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Third step: Compute consensus of a window

Segmentation strategy

1. Compute shared anchors between the reads
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Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as VA; Aj1:

@ A, is followed by A;+ in at least N reads

@ A1 is never followed by A;
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Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors
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Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

u. RUNIVERSITE

Morisse et al. LoRSCo 28/41



Oliti Introduction Workflow Experiments Conclusion
S 000000000 000000000000000000800 0000 0000000

Fourth step: Anchor the consensus to the read

Retrieve the corrected template

@ Get the consensus result
@ Align the template to it (with dynamic programming)

@ Why not consider the whole consensus? It does not always
represent the template...
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Fourth step: Anchor the consensus to the read

Retrieve the corrected template

@ Get the consensus result
@ Align the template to it (with dynamic programming)

@ Why not consider the whole consensus? It does not always
represent the template...

Example

template

corrected template
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Fourth step: Anchor the consensus to the read

Align the corrected template to the read

@ Replace the aligned part of the template by its correction on the
read

@ Non-corrected bases in lowercase, corrected bases in uppercase
= Polishing

@ Repeat with the other windows
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Fifth step: Polish the correction

Approach

@ Find sketches of lowercase (uncorrected) bases
@ Rely on flanking k-mers to define a window
@ Build a DBG from the window’s sequences

@ Traverse the graph to find a path between the anchor k-mers

.. .GATCGGGTcatTGCCCGIGTTTATGCGTGTG. . .
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@ E. coli, 50x PacBio simulated LRs, 12% error rate

@ S. cerevisiae, 50x PacBio simulated LRs, 12% error rate
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Experiments

Datasets

@ E. coli, 50x PacBio simulated LRs, 12% error rate

@ S. cerevisiae, 50x PacBio simulated LRs, 12% error rate

Compared tools

@ Canu

@ Daccord

@ LoRMA

e MECAT
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Experiments

Results (E. coli)

Corrector Throughput (Mbp)  Error rate (%) Runtime  Memory peak (MB)
Original 232 12.2674 N/A N/A
Canu 173 0.5841 19 min 20 3,623
daccord 218 0.0166 38 min 13,559
LoRMA 126 9.4315 37 min 31,902
MECAT 193 0.1118 4 min 2,130
LRSC 211 0.1784 1h 3,927
_ J RUNIVERSITE
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Experiments

Results (S. cerevisiae)

Corrector Throughput (Mbp) Error rate (%) Runtime  Memory peak (MB)
Original 618 12.2835 N/A N/A
Canu 477 0.6294 55 min 3,702
daccord 579 0.0451 1 h 51 min 31,774
LoRMA 339 9.6010 2 h 41 min 31,480
MECAT 510 0.1493 11 min 4,275
LRSC 561 0.3412 3 h 56 min 8,487
_ J RUNIVERSITE
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Conclusion

Combines different strategies from the SOTA

Computes actual MSA

Introduces a segmentation strategy allowing fast computation of
MSA

Compares well to the SOTA

@ Runtime remains an issue

Available at: https://github.com/morispi/LoRSCo
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Future works

@ Focus on the runtime:

o Adapt the parameters

e Optimize the polishing step
@ Adapt windows length and coverage threshold in real time

@ Validate the method on real data
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