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Abstract
Dichotomic Selection on words :
a probabilistic analysis
Julien Clément, Brigitte Vallée

CNRS, Laboratoire GREYC, Université de Caen, ENSICAEn , CNRS
*Corresponding author: brigitte.vallee@unicaen.fr

Abstract
The dichotomic search is one of the most basic tool for locating the position of a
target value x within a sorted list of n elements. This scheme, that has a classical
“divide-and-conquer” flavour, is a good algorithmic compromise in many situations,
because it is straightforward to implement and nonetheless guarantees a Θ(log n)
number of comparisons between x and the n elements of the list. In this paper, we are
interested in the case when the list and the target values are words, that are emitted
by a source. Then, the comparison between two words is the usual (lexicographic)
comparison, and the elementary operation is the comparison between symbols. The
performance of the dichotomic selection on words is determined by the total number
of symbol comparisons.

In this context, the dichotomic selection locates a word inside a list L of n words
(sorted in the lexicographic order). This is the basis for an efficient implementation
of searching in a suffix array. This structure is a widely used index structure in
text algorithmics [see the works of Crochemore-Hancart-Lecroq (2007) and Gusfield
(1997)]. In this context, the list is fixed and many target values are searched: it is
then natural to consider the list sorting as a precomputation step.

We then follow the book of Crochemore-Hancart-Lecroq which explains that the
sorting precomputation is not actually sufficient to build an efficient search procedure:
one needs a supplementary precomputation step which determines the longest common
prefixes between the words of the list L. With these two precomputation steps on
hand, the technique becomes very efficient: The complexity for searching for a string
of length m in a list of n strings takes O(m + log n) comparisons between symbols.

This talk will adopt a probabilistic point of view and analyses the performance of
such methods on average, in terms of the total number of symbol comparisons, when
the cardinality n of the list L tends to ∞. As in previous works of the authors, the
probabilistic model is quite general and based on the parameterization of sources. In
this context, we precisely study the mean complexity of the algorithm (in terms of
the number of symbol comparisons); we first analyse (on average) the cost of the
precomputation step that determines the longest common prefixes; then, we compare
(on average) the complexity of the present algorithm to the complexity of the optimal
algorithm (searching a word x inside the trie T (L) built on the sequence L of words).
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Dichotomic Selection on words : a probabilistic analysis

Our methods are based on the (Dirichlet) generating functions associated with the
source, and deals with various analytic tools, already used in the authors in their
previous works on the “realistic” analysis of classical searching and sorting algorithms.
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Abstract
Minimum Segmentation for Pan-genomic
Founder Reconstruction in Linear Time
Tuukka Norri1, Bastien Cazaux1*, Dmitry Kosolobov1 and Veli Mäkinen1

1Department of Computer Science, University of Helsinki, Helsinki, Finland
*Corresponding author: bastien.cazaux@helsinki.fi

Abstract
Given a threshold L and a set R = {R1, . . . , Rm} of m haplotype sequences, each hav-
ing length n, the minimum segmentation problem for founder reconstruction is to par-
tition the sequences into disjoint segments R[i1+1, i2],R[i2+1, i3], . . . ,R[ir−1+1, ir],
where 0 = i1 < · · · < ir = n and R[ij−1+1, ij ] is the set {R1[ij−1+1, ij ], . . . ,
Rm[ij−1+1, ij ]}, such that the length of each segment, ij − ij−1, is at least L and
K = maxj{|R[ij−1+1, ij ]|} is minimized. The distinct substrings in the segments
R[ij−1+1, ij ] represent founder blocks that can be concatenated to form K founder
sequences representing the original R such that crossovers happen only at segment
boundaries. We give an optimal O(mn) time algorithm to solve the problem, improv-
ing over earlier O(mn2). This improvement enables to exploit the algorithm on a
pan-genomic setting of haplotypes being complete human chromosomes, with a goal
of finding a representative set of references that can be indexed for read alignment
and variant calling. We implemented the new algorithm and give some experimental
evidence on the practicality of the approach on this pan-genomic setting.

An extended version of this abstrat can be found in [1].

References
[1] Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen. Minimum

segmentation for pan-genomic founder reconstruction in linear time. In 18th
International Workshop on Algorithms in Bioinformatics, WABI 2018, August
20-22, 2018, Helsinki, Finland, pages 15:1–15:15, 2018.
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Abstract
Integrating Parallelism into Text Indexing
Johannes Fischer1

1 TU Dortmund, Germany

Abstract
We describe some of our recent advances on the parallel construction of full-text
indexes in shared and distributed memory systems. We focus in particular on wavelet
trees and suffix arrays. We also describe how queries can be accelerated if the index
is held in such systems, with good speed-ups and/or low communication overhead.
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Extended abstract
Development of indexing compressed
structure for analyzing a collection of
similar genomes: application to rice
Clément AGRET1,2, Annie CHATEAU 1, Gaetan DROC 2, Alban MANCHERON 1,
Manuel RUIZ 2

1LIRMM,CNRS and Université de Montpellier, 161 rue Ada, F-34095 Montpellier, France
2CIRAD, UMR AGAP, Avenue Agropolis, F-34398 Montpellier, France
3INRA, UMR AGAP, F-34060 Montpellier, France
*Corresponding author: agret@lirmm.fr

Abstract
As the cost of DNA sequencing decreases, the high throughput sequencing technologies become more
and more accessible to many laboratories. Consequently, new issues emerge that require new algorithms
including tools for indexing and compressing thousands of genomes, as for example the 3000 rice genomes
project [1], for which we are peculiarly interested in.
Indexing an unassembled genomes amounts to indexing a set of k-mers. Unassembled genomes can be
considered as very large texts. We can refer them to indexable dictionary problem which consists in storing
a set of words w. In our case k-mers are overlapping words based on a simple alphabet Σ = {A, C, G, T }.
In order to make our index the most operational we propose two additionnal operations ranks(i) and
selects(i). The function ranks(i) returns the number of elements (s) in the range [0, i] and selects(i)
returns the position of the ith element.

Keywords
Index — Genomes — Rice

1. Introduction

The indexation of complete genomes is an important stage in the exploration and under-
standing of data from living organisms. An efficient index should provide a quick answer to
the following questions:
– How many times a given pattern does appear in the genome?
– Which are the positions of a given pattern?
– What is the pattern length at the ith position in the genome?

The common way to structure index and compress one genome is to use the Burrows-
Wheeler Transform (BWT) [2] with the FM-index [3] on BWT sequences for requests. If
you want to index several genomes with one reference genome you may use MuGI [4]. To
build MuGI index they store the reference in compact form (4 bits to encode single char),
a variant database, one bit vector for each variant and an array kMA keeping information
about each k-mers.
The main problem with MuGI is that it does not work with our datas. For our 3000 genomes,
the VCF is too large to be handle by our clusters.
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Development of indexing compressed structure

2. Methods
We hypothesized that in a similar genome collection add a new genome similar to adding only
a few new k-mers. This hypothesis is validated after an experimentally defined threshold of
50 genomes.
As described in Figure 1, For all possible prefixes of length k1, we use a 4k1 array (1) of
pointers to a structure that represent the suffixes of all k-mers having the same prefix.
Associated to each k-mer prefixes, we use two binary vectors of size 4k2 which represent all
its associated suffixes ; Let denote these two vectors associated to prefix pref as K+

pref and
K−pref .
The K+

pref color green in the vector (2) represents set of core k-mers having prefix pref ,
where K+

pref [i] is true if and only if the k-mer starting with the prefix pref and ending with
the ith suffix in the lexicographic order occurs in all the indexed genomes.
Similarly, the K−pref color orange in vector (2) represents set of variable k-mers having prefix
pref , where K−pref [i] is true if and only if the k-mer starting with the prefix pref and ending
with the ith suffix in the lexicographic order occurs in at least one but not all of the indexed
genomes.
Trivially, given a k-mer w starting with prefix pref and ending with the ith suffix in lexico-
graphic, if w doesn’t occur in any genome, we have K+

pref [i] = K−pref [i] = false ; If w occurs
in at least one genome, we have either K+

pref [i] = true or K−pref [i] = true.
For each variable k-mer w, we define a binary vector Gw of length n (3) such that Gw[i] is
true if and only if w occurs in the ith indexed genome.

Figure 1. Representation of our structure to index the k-mers of n genomes. We
computationaly define a prefix length k1 for k-mers and denote as k2 the k-mers suffix
length such that k2 := k − k1.

In order to represent the binary vectors K+
pref and K−pref we only store the indices of their

true values in two arrays K+
pref and K−pref in Figure 2. Since there are 4k2 available k-mer

suffixes, we need 2 k2 bits to store each indices. For K+
pref , indices are sorted by construction

(the structure is initialized when indexing the first genome and core k-mers can either remain
in the set of core k-mers or move to the set of variable k-mers whenever a new genome is
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Development of indexing compressed structure

added to the index). Contrarily, the set of variable k-mers is not sorted by construction.
Since 1/ each indices are stored using 2 k2 bits (which does generally not correspond to the
size of a standard integer) and 2/ for each variable k-mer w, we have an associated binary
vector Gw, sorting the K−pref is heavily time consuming or requires the use of an additional
pointer for each variable k-mer, which is also heavily memory consuming. As a compromise,
we choose to define an auxiliary vector O−pref using 16 bits words (instead of 32 or 64 bits
for pointer) which stores the indices order of suffixes stored in K−pref . This way, the ith

stored variable k-mer (in increasing order) having prefix pref is K−pref [O−pref [i]]. Sorting
O−pref doesn’t require anymore moving values of K−pref nor their associated G∗ vector.

Figure 2. Representation of our vectors. (A) Vector of core suffixes K+
pref . This vector

contain all position of the suffixes shared by all genomes (all green boxes in Figure 1). This
vector is sorted by lexicographic order. (C) Vector of variable suffixes K−pref . This vector
contains all position of the suffixes not shared by all genomes (all orange boxes in Figure 1).
This vector is unsorted. (B) Vector call O−pref allowing to get the Order of position of K−pref

we use this table to quickly answer the question where is the i th suffix in the variable
(which is not shared by all genomes). (3) is a binary vector of length n Gw. In this example
Gw (w=pref.s′1)

3
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Development of indexing compressed structure

Let’s take



n = Genome Number
N = Number total of k-mers
N ∗ = Number of distincts K-mers
|K−pref | = N−(Number of k-mers in variable genome)
|K+

pref | = N+(Number of k-mers in the core genome)
N ∗ = N+ +N−

f(G) = o(|G|)
g(G) = o(|G|)

The size of the RedOak index.
|index| = λ 4k1 64 + 2 k2N ∗ + (|G|+ 16)N−

?= λ 4k1 64 + 2 k2
N
|G|
(
f(G) + g(G)

)
+ (|G|+ 16) N

|G|
g(G)

?= λ 4k1 64 + 2 k2N
f(G) + g(G)
|G|

+N g(G) + 16N g(G)
|G|

?= λ 4k1 64 +N g(G) + o
(
k2N

)
The number of bits by nucleotides.

B/N =
λ 4k1 64 +N g(G) + o

(
k2N

)
N

?= λ 4k1 64
N

+ g(G) + o(k2)

?= λ 64N ∗

N logN ∗ + g(G) + o(k2)

?=
λ 64 f(G)+g(G)

|G|

logN ∗ + g(G) + o(k2)

?= o

(
1

logN ∗

)
+ g(G) + o(k2)

?= g(G) + o

(
k2 + 1

logN ∗

)

3. Results and Discussion
We present a structure which proposes a solution to index and compress very repetitive
sequences over small alphabet in texts using k-mers. k-mers are factors of length k in the
considered sequences. We built a 4k1 array, where k1 < k, and each entry, namely an array,
is indexed by a prefix of size k1 of existing k-mers. In each prefix array we insert a 4k2 bit
vector which represents all possible k-mers begining with the considered prefix.
We will use libGkArray [5] to query a large read collections and update our structure. We
chose libGkArray instead of JellyFish [6] or KMC (any versions) [7]. LibGkArray library
work in main memory and is parallelized with openmpi therefore they use GPLv3 licence.
Results are promising on 10 genomes and we are actually performing intensive tests on more
complex datasets.

4

11/49



Development of indexing compressed structure
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Abstract
Indexing de Bruijn graph with minimizers
Antoine Limasset*1, Fatemeh Almodaresi2, Rayan Chikhi1 and Rob Patro2

1Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - F-59000, Lille, France
2Department of Computer Science, Stony Brook University
*Corresponding author: antoine.limasset@gmail.com

Abstract
A simple but fundamental need when dealing with genomic sequences is to be able
to index very large sets of fixed length words (k-mers) and to associate information
to these sequences (origin, abundance, strand, score etc. . . ). As trivial as this
need may seem, computationally challenging instances are extremely common in
Metagenomic, pangenomic and even for the study of single large genomes, where
sets of dozens or hundreds billions k-mers need to be processed. We propose a novel
data structure able to both test the membership and associate information to the
k-mers of a De Bruijn graph in a very efficient and exact way. We wrote a proof
of concept dubbed Blight available at https://github.com/Malfoy/Blight to assess
the performances of our proposed scheme. We were able to index all the k-mers
of a human genome with less than 8GB of memory (≈ 24 bits per k-mer). Our
proposed index is also designed to provide extremely fast and parallel operations,
able to perform billions queries in minutes.

Context
The de Bruijn graph structure is increasingly used as an efficient mean to represent
a set of k-mers of interest. Several previous studies focused on the representation
of a set of k-mer (Gosamer [1], Minia [2], DBGFM [3]). If those structure are
extremely memory efficient (A modified version of Minia [4] achieved the rate of 8.58
bit per k-mer on a human dataset) they do allow to associate information to k-mers.
Recently, the usage of efficient minimal perfect hash function (MPHF) library allowed
the indexation of billions of keys with moderate resources [5]. But such functions are
not able to recognize alien keys that were not in the indexed set. If such a key is
queried, the MPHF may return the position of an indexed key hence producing a
false positive (FP) error. The trivial solution would be to associate to each k-mer,
in addition to its associated value, the k-mer sequence itself. This way an alien key
would be recognized. But such structure require 2 ∗ k bits per k-mer which can
be extremely expensive, especially for large k. In order to cope with this problem
SRC [6] proposed the use of a binary fingerprint, in order to keep the FP rate as
low as possible while presenting a low memory overhead. The fingerprint mechanism
lead to a n bits per kmer overhead for a false positive rate around 1/2 n which can
guarantee a very low amount of errors. Another proposition made by Pufferfish [7] is
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Blight

to propose an exact structure also based on this MPHF in order to index specifically
the k-mer of a de Bruijn graph. Their idea to handle the alien keys in a memory
efficient way is to associate to each k-mer its position in the indexed De Bruijn graph.
This led to a memory efficient and fast to query structure able to index a human
genome with 12 GB (which represent approximatively 4 bytes per k-mer) while being
two time faster than FM-index based tools as BWA [8].

Methods
In the Pufferfish scheme, the main memory usage come from the encoding of the
positions of the k-mers in the graph as each position cost O(ln(Genome size)) to
encode. We propose to improve this scheme by working on subgraphs in order to
reduce the memory amount required to encode such positions. For this we will take
advantages to the fact that overlapping k-mers tend to share minimizers [9] and
that we can represent a set of n overlapping k-mers sharing a minimizer with a
super-k-mer of length n + k − 1. This super k-mer 1representation were notably used
by KMC2 [10] in order to highly reduce the disk usage of external memory k-mer
counter. The idea to improve the Pufferfish scheme come in two steps. First we will
split the k-mers of our de Bruijn graph according to their minimizers, and encode
them as super-k-mers. This way we have to deal with order of magnitude smaller
sequences sets that we will call buckets. For example with a minimizer size of 12 on
a human genome graph counting 2.5 billions k-mers, the largest bucket presented
only 121,452 nucleotides. Those buckets are henceforth order of magnitude smaller
and the amount of bits necessary to encode a position into them will be drastically
reduced: log2(2.5 ∗ 109) = 31 where log2(1.2 ∗ 105) = 17. In a second part we will
encode the k-mers positions into their respective buckets, as we can know a k-mer’s
minimizer directly from its sequence. This lead to several improvements :

• The amount of bit used to encode the position is highly reduced
• The data locality of the query is greatly improved, as each minimizers use its

own small structure that can fit in cache, several successive query will therefore be
able to be also treated without cache miss

• The construction of the index may be done in parallel
• The membership queries can be highly optimized by using the graph structure
We implemented this method in a header-only C++ library without any depen-

dencies in order to be easily usable for most users. The code is open-source and
available at https://github.com/Malfoy/Blight.

Result
We were able to index all k-mers of a human genome with less than 8GB of memory
(less than 24 bits per k-mer) and the index can be built in less than one hour on a
20 cores cluster. The query of the whole dataset against itself were done within 5
minutes on the same cluster.
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Matching Algorithm
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Abstract
The string matching problem consists in finding one or, more usually, all the oc-
currences of a pattern in a text. It can occur for instance in information retrieval,
bibliographic search and molecular biology. It has been extensively studied and nu-
merous techniques and algorithms have been designed to solve this problem (see [1, 2]).
We are interested here in the problem where the pattern is given first and can then be
searched in various texts. Thus a preprocessing phase is only allowed on the pattern.

Most string matching algorithms use a mechanism known as the sliding window
strategy to scan the text. As early as 1997 a new family of algorithms has been
designed that do not fit in the sliding window strategy: it consists in first locating
the window in the middle of the text, performing an attempt and then recursively
applying the same procedure on the left part and on the right part of the text,
while possibly excluding some parts of the text giving the “dead-zone” method [3].
Algorithms from this family are highly parallelizable.

This strategy has not attracted much attention. To address this, here we present
three different methods for performing the symbol comparisons during the attempts
and for computing the lengths of the shifts.
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Extended abstract
SALZA: Algorithmic Information Theory and
Universal Classification for Sequences
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Abstract
This work is an attempt at the implementation of a practical tool called SALZA to accomplish various
information-theoretic tasks on sequences. Traditional information theory relies on a probabilistic
model of the data. When such a probabilistic model is unavailable or hard to devise, one may want
to replace it with an algorithmic model. In this paper, the algorithmic model of the data is that of
the well-known Lempel-Ziv primitive: we assume new data is to be expressed in terms of references
to prior data.
SALZA enables a flexible specification of prior data and extracts information quantities based on the
significance of the references to these prior data. The tool readily implements the computation
of an information measure based on LZ77 [1] and a universal classifier based on the Ziv-Merhav
relative coder [2] for the universal clustering of sequences. SALZA can be used out of the box
to replace probabilistic learning routines in algorithms that need an independence measure (most
notably, causality inference in artificial intelligence). All proofs are to be found elsewhere [3].
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1. Algorithmic information theory
The crux of information theory is the definition of a conditional mutual information
quantity which respects the chain rule and the data processing inequality. When
seeking such a quantity for sequences, we naturally derive a universal semi-distance
suitable for blind classification of sequences.

We consider finite sequences on a finite alphabet A and we acknowledge the usual,
lexicographical ordering of these sequences. The empty sequence and the empty set
are denoted as ∅. A+ is the set of finite, non-empty sequences and A? = A+ ∪ ∅.
The length of a sequence and the cardinal of a set or an alphabet is denoted as |.|.
In a set of x1, . . . , xn sequences, x≤k denotes the first k of them and x≤0 = ∅.

Specifying prior information
Our generic primitive is that of the longest copy-paste (reference) to prior data. The
key issue is to allow any arbitrary policy R for specifying prior information. Given
the sequences y, x1, . . . , xn and a priori policy R (a subset of y, x1, . . . , xn), SALZA
will factorize y by searching for the longest word in R. Specifying a given prior policy
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R depends on the target application. In this paper, we consider two policies with
respect to the current position of the input look-ahead pointer during the sequential
LZ-based encoding of y:

1. y|x1, . . . , xn : R is the past of y (the part of y that is already factorized) and
the entirety of x1, . . . , xn ;

2. y|+x1, . . . , xn : R is the entirety of x1, . . . , xn.

When left unspecified, the factorization is denoted as y o x1, . . . , xn.
A SALZA factorization slices y into m symbols of the form (si, li, zi)1≤i≤m :

y o x1, . . . , xn = (s1, l1, z1) . . . (sm, lm, zm).

In a SALZA symbol, s is a pointer to one of the prior sequences, l is a length and
z is a positive integer. A SALZA symbol (s, l, z) may be either:

1. a literal: s = y, l = 1 and z is the literal in y that should be inserted into the
output buffer;

2. a reference: l > 1 is the length of the longest word in R matching new data
and, although they are not used here, s would be the sequence in which the
word was found and z would be the offset from the start of s at which the
copy-paste should begin.

The product of two factorizations (possibly with different prior sequences) is
defined as the concatenation of the SALZA symbols:

y1 o x1,1, . . . , x1,n1 × y2 o x2,1, . . . , x2,n2 =

(s1,1, l1,1, z1,1) . . . (s1,m1 , l1,m1 , z1,m1) (s2,1, l2,1, z2,1) . . . (s2,m2 , l2,m2 , z2,m2).

Definition 1.1 SALZA joint factorization and LZ77 factorization.
The joint factorization of x1, . . . , xn ∈ A? is defined as the following product of

factorizations:

x1 . . . · xn =
n∏
i=1

xi |x≤i−1.

When a factorization is expected, x1 = x1 |∅ may therefore be used to denote the
usual LZ77 factorization of x1.

Expressing significance of references
Central to our approach is the set of lengths in a SALZA factorization:

Lyox1,...,xn = {li}1≤i≤m .

Definition 1.2 Admissible function.
For a sequence x, f : N? → [0, 1] is an admissible function iff:

1. f is monotonically increasing, and
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Name T f(l < T ) f(1) f(l?)
count (1) 0 0 1 1
threshold l? 0 0 1
linear 1 + 2(l? − 1) l−1

2(l?−1) 0 0.5
quadratic

√
2(l?)2 − 1 l2−1

2((l?)2−1) 0 0.5
sigmoid αl? 1

1+e−l+αl?
1

1+eαl? 0.5
exponential log 2+l? log ε

log 2+log ε exp
(
log ε− (l − 1) log 2+log ε

l?−1

)
ε 0.5

Table 1. List of available admissible functions in our reference implementation
(option -a). Of theoretical interest is the constant count admissible function
(denoted as 1 in the text) that may be used to emulate the computation of usual
LZ-based complexities. By default, we use the exponential function. An
admissible function may be centered on a ”noise level” l?. A reasonable best guess
for l? is automatically used by default, but can be overriden with option -l l? > 1
(and T is updated accordingly by enforcing continuity of f). This makes SALZA
suitable to manually explore the similarity at any ”noise level” l?.

2. ∃ 0 < T < |x| ,∀ l ≥ T , f(l) = 1.

In the definition above, the value T acts as an internal threshold, above which all
reference lengths are equally considered most meaningful.

Definition 1.3 Relative SALZA similarity.
Given an admissible function f and sequences y, x1, . . . , xn ∈ A∗, the relative

SALZA similarity of y given x1, . . . , xn, denoted Sf (y o x1. . . . , xn), is defined as:

Sf (y o x1, . . . , xn) = |y| −
∑

l∈Lyox1,...,xn

(l − 1)f(l). (1)

The SALZA relative similarity is designed so that it degrades to usual complexities
when f = 1 and it is low when the sequences are similar. It is bounded.

Lemma 1.1 0 ≤ Sf (y o x1, . . . , xn) ≤ |y|.

SALZA-based information theory
Once our relative similarity operator is defined, we can use it to devise a full
implementation of LZ77-based algorithmic information theory.

Lemma 1.2 SALZA joint similarity and self-similarity.
By Def. 1.1, given an admissible function f and sequences x1, . . . , xn ∈ A∗, the

SALZA joint similarity is computed as:

Sf (x1 . . . · xn) =
n∑
i=1

Sf (xi |x≤i−1).

By Def. 1.3, the order of the x1, . . . , xn does matter. The notation for joint
similarity gracefully degrades into that of the LZ77-based computation of the self-
similarity Sf (x1).
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Definition 1.4 SALZA conditional mutual similarity, asymmetric version.
Given an admissible function f and sequences x, y, z ∈ A∗, the SALZA conditional

mutual similarity of x and y given z is defined as:

If (x : y|z) = Sf (z · x) + Sf (z · y)− Sf (z · x · y)− Sf (z).

If If (x : y|z) = 0, x and y are said to be dissimilar given z.

A fast way of performing basic computations is as follows:

Lemma 1.3 Fast computation of If (x : y|z).

If (x : y|z) = Sf (y|z)− Sf (y|z, x).

Lemma 1.4 Chain rule for SALZA similarity, asymmetric version.
Given sequences x, y, z, t ∈ A?,

If (x : y · z|t) = If (x : y|t) + If (x : z|t, y).

Lemma 1.5 Data processing inequality for SALZA, asymmetric version.
Given sequences x, y, z ∈ A?:

Sf (y|z) ≤ 1 =⇒ If (x : y|z) = 0 =⇒ If (x : y) ≤ If (z : y).

It can be shown that S1 satisfies the same requirements as in Sec. 7.1 of [4] to
qualify as an information measure. Such an information measure is defined on the
lattice of sequences, using the lexicographical order as ≤. For the sake of tractability,
[4] defines two sets of sequences A = {z, x} and B = {z, y}, and the lattice operators
are approximated as A ∧B = zxy and A ∨B = z.

Theorem 1.1 S1 complexity is an information measure in the sense of [4].

1. Normalization: Sf (∅) = 0;

2. Monotonicity: x ≤ y =⇒ Sf (x) ≤ Sf (y);

3. Approximate submodularity: S1(z · x) + S1(z · y) ≥ S1(z · x · y) + S1(z).

When f 6= 1, it is easy to devise dedicated counter-examples that violate the
property of approximate submodularity (but normalization and monotonicity would
still hold). This implies that If can not be guaranteed to be positive in the general
case. However, we have used several datasets to assess departure from positivity and
we did not witness any such departure in practice.

2. Universal causality inference
SALZA conditional mutual similarity can be plugged into the PC algorithm for
causality inference [5]. In Fig. 1, we are able to (almost) recover the order of writing
of 8 successive versions of a paragraph.
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(a) 8 fragments of a text.

fragment_1

fragment_2

fragment_3

fragment_4

fragment_5

fragment_6

fragment_7

fragment_8

(b) Output of the PC algorithm[5].
Figure 1. Left: 8 successive drafts of a paragraph from La Réticence by author
Jean-Philippe Toussaint (transcripts courtesy Prof. Thomas Lebarbé, TGIR
HumaNum). Right: output of:
./salza-driver --pcalg -i ˜/dataset/toussaint --skel stable --dag
--alpha 0.01 | neato -Tpdf > toussaint.pdf

3. Universal classification
SALZA can be used to devise a universal semi-distance on sequences based on the
Ziv-Merhav relative coder [2].

Definition 3.1 NSDf .
Given an admissible function f , and two sequences x, y ∈ A+ such that |x|, |y| > 1,

the normalized SALZA semi-distance, denoted NSDf , is defined as:

NSDf (x, y) = max
{
Sf (x|+y)− 1

|x|
,
Sf (y|+x)− 1

|y|

}
.

Theorem 3.1 NSDf is a normalized semi-distance.

When compared with the state-of-the-art NCD [6] for blind clustering of sequences,
the NSD not only performs faster but is also constantly as much discriminant as the
NCD (often much more), see Fig. 2 (and [3] for more datasets).

Online resources
Preprint (with proofs), datasets, C code and binaries are located at:

https://forge.uvolante.org/stable/salza-driver/wikis/home
A future release will provide the fully multithreaded version of SALZA (parallel

construction of search structures and parallel factorization) and include the PC
algorithm used in Sec. 2.

5

21/49



SALZA

0.0 0.1 0.2 0.3 0.4 0.5 0.6
branch length

10

20

30

40

la
n
g
u
a
g
e
s

 irishGaelic
 scottishGaelic
 wallon
 occitanAuvergnat
 uzbek
 estonian
 finnish
 hungarian
 turkish
 icelandic
 faroese
 welsh
 breton
 basque

 latvian
 lithuanian
 sorbian
 polish

 slovak
 czech
 slovenian
 croatian
 serbian
 bosnian

 german
 luxembourgish

 frisan
 Dutch
 afrikaans
 swedish
 norwegianNynorsk
 norwegianBokmal
 danish

 albanian
 maltese
 corsican
 sardinian
 romanian
 english
 rhaetoRomance
 italian
 friulian
 french

 occitan
 catalan
 protuguese
 asturian
 galician
 spanish

(a) NCD/xz.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
branch length

10

20

30

40

la
n
g
u
a
g
e
s

 welsh
 scottishGaelic
 irishGaelic
 maltese

 lithuanian
 latvian

 sorbian
 polish

 slovak
 czech
 slovenian
 croatian
 serbian
 bosnian

 albanian
 wallon
 occitanAuvergnat
 romanian
 english
 corsican
 italian
 friulian
 rhaetoRomance
 sardinian

 french
 occitan
 catalan
 protuguese
 asturian
 spanish
 galician

 hungarian
 uzbek
 turkish
 icelandic
 faroese

 finnish
 estonian
 basque
 breton

 luxembourgish
 german

 frisan
 dutch
 afrikaans
 swedish
 norwegianNynorsk
 norwegianBokmal
 danish

(b) NSD, l? = 2.12.
Figure 2. rights dataset: Phenetic representation of various human writing systems.
Texts are translations of the Universal Declaration of Human Rights.
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Abstract
Compared to traditional technologies, High-throughput sequencing technologies or
Next Generation Sequencing (NGS) technologies have greatly increased sequencing
throughput. Hence, this leads to an enormous number of highly similar DNA
sequences. This collections of data are identical more than 99% to a reference
sequence. Obviously, this opens the door for bioinformaticians to exhibit algorithms
to handle efficiently the huge amount of available data. Naturally, storing, indexing
and support for fast pattern matching have become important research topics.

Pattern matching can be carried out in two ways: off-line by using an index
or on-line when indexing is not possible. Adopting the second method seems to
be more suitable faced to the problem of lack of space to build an index. In our
context, we chose to resolve the problem by scanning the whole set of sequences
rather than index it. The main idea is to examine identical segments not repeatedly.
Rather than iterating the input sequences sequentially, our main goal is to scan
simultaneously the whole sequences. Thereby, classical algorithms can be extended
easily, while considering the existence of eventual variations during scanning. Yet the
sequences differ from another by a few number of differences such as substitutions
or single nucleotide variants (SNVs), indels, copy number variations (CNVs) or
translocations to name a few, we assume here that sequences include variations only
of type substitutions.

We present efficient practical algorithms that solve exact pattern matching
problem in a set of highly similar DNA sequences. We first present a method for
exact single pattern matching when k variations are allowed in a window which size
is equal to the pattern length. We then propose an algorithm for exact multiple
pattern matching when only one variation is allowed in a window which size is equal
to the length of the longest pattern. Experimental results show that our algorithms,
though not optimal in the worst case, have good performances in practice [1].
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[1] N Ben Nsira, T Lecroq, and É Prieur-Gaston. Practical fast exact pattern

matching algorithm for highly similar sequences. In Data mining from genomic
variants and its application to genome-wide analysis 2018 jointly with IEEE
BIBM 2018. Accepted.

1

23/49



Abstract

Using  chromosome  conformation
capture  to  assemble  genomes  to
perfection
Nadège  Guiglielmoni1*,  Antoine  Limasset2,  Romain  Koszul3,  Jean-
François Flot1

1Department of Organismal Biology, Université libre de Bruxelles, Brussels, Belgium
2Bonzai team, CRIStaL lab, Université Lille 1,Villeneuve-d'Ascq, France
3Department of Genomes and Genetics, Institut Pasteur, France
*Corresponding author: Nadege.Guiglielmoni@ulb.be

Abstract
Despite a near-exponential increase in the number of eukaryotic genome projects over

the last few years, the vast majority of them yield only "permanent drafts", i.e., genomes
that remain heavily fragmented at the end of the project and are deposited as such in public
databases. This is because the large and abundant repeats found in eukaryotic genomes
make it extremely difficult to reach the "golden standard" of one contig per chromosome.
Bleeding-edge chromosome conformation capture (3C) approaches appear as a promising
path  to  overcome  the  repeat  issue  and  may  provide  accurate  and  reliable  eukaryotic
genomes, thereby increasing the power of downstream analyses[1].  3C-based scaffolders
and reassemblers, such as SALSA[2] and GRAAL[3], have already demonstrated that contact
genomics provides key insights into the puzzling challenge of reconstructing genomes.
Improvements to existing computational pipelines are required however to enable de novo
assembly of 3C data with maximal accuracy and completeness. As part of the Innovative
Training Network (ITN) IGNITE, which focuses on comparative genomics of non-model,
non-vertebrate  organisms,  we  plan  to  create  a  scaffolder  that  uses  chromosome
conformation capture data to solve assembly graphs generated by genome assemblers  such
as Bwise[4]. We will then apply it to generate a chromosome-scale assembly of the genome
of a chaetognath, a group whose taxonomic position remains highly controversial [5] and for
which no genome sequence is presently available. To achieve this goal, the protocol of
chromosome conformation capture will need to be fine-tuned for chaetognaths in order to
obtain  contact  information  and  sequences  from  a  single  individual.  We  believe  that
chromosome  conformation  capture  will  be  an  efficient  and  economic  solution  to  the
genome assembly problem, with the additional advantage of yielding both an assembled
genome sequence  and a contact map as outputs.
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Abstract
La grande diversité du répertoire immunitaire repose sur un mécanisme génétique appelé recombi-
naison V(D)J. De nombreux logiciels permettent d’analyser des données de séquençage haut-débit
portant sur ces recombinaisons. Cependant, à notre connaissance, Vidjil-algo est le seul logiciel
proposant une heuristique sans alignement afin d’accélérer le traitement de millions de séquences.
Nous proposons ici une amélioration de notre heuristique et montrons que celle-ci permet d’aller
environ 8 fois plus vite en occupant moins d’espace mémoire et sans perte de qualité de résultats.
Cette nouvelle heuristique est disponible ici : https://gitlab.vidjil.org (en développement)

Keywords
Spaced seeds, Aho-Corasick automaton, Alignment-free methods

1. Introduction
Les recombinaisons V(D)J sont des événements génétiques se produisant dans des
cellules immunitaires immatures, des lymphoblastes. Ces recombinaisons sont à
l’origine de la production d’une très grande diversité de récepteurs sur les lymphocytes
B et T [1]. Une recombinaison V(D)J est le résultat d’un processus aléatoire qui a
sélectionné un gène V (parmi quelques dizaines à une centaine), éventuellement un
gène D, et un gène J (parmi une dizaine) à recombiner de manière contiguë sur le
génome de ces lymphoblastes. À la jonction des gènes V, D et J, des nucléotides
peuvent être supprimés et d’autres, alétatoires, peuvent être ajoutés (voir Figure 1),
ce qui améliore encore cette diversité.

V

AATA

D

GCT

J

Figure 1. Exemple de recombinaison VDJ. Après suppression de quelques
nucléotides à la jointure entre les gènes V, D et J, AATA est inséré entre le gène V et
le gène D et GCT est ajouté entre le gène D et le gène J.

Les récépteurs des lymphocytes B et T jouent un grand rôle dans la reconnaissance
des antigènes et donc dans la réponse immunitaire adaptative. En immunologie,
connâıtre les recombinaisons V(D)J permet ainsi de qualifier voire quantifier une
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telle réponse immunitaire. En outre, ces recombinaisons V(D)J étant issues d’un
processus aléatoire, elles constituent un identifiant d’une population de cellules ayant
le même lymphoblaste d’origine (on parle alors de population clonale, ou clone). En
hémato-oncologie, recourir aux recombinaisons V(D)J comme identifiant d’un clone
est particulièrement utile pour étudier l’évolution de cancers du sang, touchant ces
lymphocytes.

Dans les années 2010, de nombreuses méthodes et logiciels ont été proposées
pour la détection et la dénomination de recombinaisons V(D)J (voir par exemple
[2]). Nous appelons détection le fait de déterminer si une recombinaison V(D)J
est présente dans une séquence d’ADN et d’identifier le type de châıne à laquelle
cette recombinaison correspond. Nous appelons dénomination le fait de déterminer
quels gènes ont été précisément choisis dans une recombinaison V(D)J ainsi que
les suppressions et insertions au niveau de la jonction. La plupart de ces logiciels
procèdent à la dénomination en même temps que la détection est faite et ceci pour
chacune des séquences données en entrée.

À l’inverse, lorsque nous avons initialement publié notre logiciel Vidjil [3] nous
avons choisi une approche différente : d’abord détecter des recombinaisons V(D)J,
les regrouper par clone et enfin dénommer, pour les clones les plus abondants, les
recombinaisons V(D)J. En effet, pour de nombreuses applications, il est inutile de
connâıtre la dénomination exhaustive de chacun des clones (il peut y en avoir des
dizaines ou des centaines de milliers dans un jeu de données de quelques millions de
séquences).

Chez l’humain, les récepteurs des lymphocytes B ont une châıne lourde (IGH) et
une châıne légère (IGλ ou IGκ), tandis que ceux des lymphocytes T ont soit deux
châınes TRα et TRγ, soit deux châınes TRβ et TRδ. Une recombinaison V(D)J
peut donc provenir de n’importe laquelle de ces châınes. Notre algorithme précédent
recherchait ainsi 16 types de recombinaisons différentes, incluant ces différents types
de chaines ainsi que des recombinaisons incomplètes – dans une telle recombinaison,
on cherche, d’une manière plus générale, un gène en 5’ et un autre gène en 3’
de la séquence, comme c’est le cas par exemple pour les recombinaisons DJ. De
manière plus générale, si ` est le nombre de type de recombinaisons recherchées, et
n la longueur de la séquence, notre algorithme de détection était en O(`n). Nous
présentons maintenant un algorithme en O(n).

2. Détection linéaire de recombinaison V(D)J multi-châınes
Pour détecter des recombinaison V(D)J dans une séquence donnée, des k-mers espacés
sont utilisés afin de déterminer le nombre de hits parmi des gènes V et des gènes
J. S’il existe dans la séquence un point à partir duquel le nombre de hits avec des
gènes V d’un côté et avec des gènes J de l’autre côté est statistiquement significatif,
une recombinaison V(D)J est alors détectée. Cette heuristique, déjà utilisée dans la
version d’origine de notre algorithme, est conservée.

Initialement l’heuristique était relancée pour chaque type de recombinaison
possible. Nous utilisons ici un automate d’Aho-Corasick adapté afin de détecter en
une fois les recombinaison V(D)J de tous les types (y compris les recombinaisons
incomplètes) en temps O(n), avec n la taille de la séquence.
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L’automate d’Aho-Corasick est particulièrement utile pour rechercher une banque
de motifs dans une séquence. La complexité en temps de la requête est linéaire dans
la taille de la séquence et indépendante de la taille de la banque de motifs [4]. Pour
plus de détails sur cet automate, voir [5, Chap. 2.2]. Ici, la banque de motifs indexés
par l’automate d’Aho-Corasick ne sont pas les gènes V, D, J eux-mêmes mais les
graines espacées extraites de ces gènes. Nous stockons dans les états acceptants de
l’automate un couple comportant le type de gène (V, D ou J) ainsi que la châıne de
laquelle il provient.

Plus formellement, une graine espacée u est une suite de caractères matchs #
et jokers -. Notons seed(w, u) l’instance de la graine u pour le mot w telle que
seed(w, u) = v avec, pour 0 ≤ i < |w|, vi = wi si ui = # et vi = - sinon. On a ainsi
seed(ATCG, ##-#) = AT-G. On définit P (g, u) l’ensemble des mots qui sont un facteur
d’un gène g avec la graine u: P (g, u) = {w | ∃i, seed(gi...i+|u|−1, u) = seed(w, u)}.
Notons qu’il y en a au plus O(|g|4z), où z est le nombre de jokers dans w (en pratique
nos graines ont au plus un joker, au milieu). Tous les mots de P (g, u), pour l’ensemble
des gènes g, sont ajoutés à l’automate d’Aho-Corasick. Cette première étape constitue
l’indexation des données. Il est possible de moduler les graines espacées utilisées en
fonction de la châıne et du type de gène, ce qui n’était pas possible avec une simple
table. Lorsque plusieurs types de gènes ou de châınes correspondent à un état de
l’automate, celui-ci est marqué comme ambigu.

Lorsqu’une séquence est requêtée, il suffit de la lire en suivant les transitions dans
l’automate. Les états acceptant rencontrés indiquent le type de gène et la châıne avec
laquelle (ou lesquels) la séquence possède une similarité. Nous identifions alors les
deux couples (type de gène, châıne) les plus rencontrés. Un calcul de significativité
détermine s’il y a un nombre suffisant d’un type de gène d’un côté et de l’autre type
de gène de l’autre.

Pour chaque séquence ainsi traitée, Vidjil-algo attribue un identifiant constitué
d’un facteur de longueur fixe dont la position centrale correspond à la position
maximisant le nombre de graines d’un type de gène d’un côté et d’un autre type de
gène de l’autre côté.

3. Résultats
Afin d’évaluer la capacité de notre heuristique à détecter des recombinaisons V(D)J,
nous avons généré des données synthétiques pour tous les types de châınes (évaluation
de la sensibilité) ainsi que des données complètement aléatoires dans lesquelles nous
ne devrions pas trouver de recombinaison V(D)J (évaluation de la spécificité). Nous
n’avons considéré que des recombinaisons complètes, les autres logiciels étudiés ne
détectant pas les recombinaisons incomplètes.

Les recombinaisons aléatoires ont été générées en effectuant toutes les recom-
binaisons possibles entre chaque combinaison de gène, V, D ou J. Pour chaque
combinaison, 10 séquences ont été générées, chacune avec un nombre aléatoire
d’insertions et de délétions au niveau des jonctions entre les gènes (moyenne à 5 et
écart-type à 5) ainsi que 2 % de substitutions dans les données (afin de prendre en
compte des artefacts de séquençage mais aussi des différences entre individus).

Nous avons comparé les résultats de notre heuristique avec MiXCR [6] et IgReC [7].
Ces logiciels effectuent dès le départ une étape de dénomination. Nous avons limité

3

28/49
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l’analyse des performances à cette étape-là, bien qu’ils puissent faire des analyses
plus approfondies. Ces logiciels produisent des résultats plus complets que ceux de
Vidjil-algo puisqu’ils fournissent une dénomination pour chaque séquence donnée en
entrée. À l’inverse Vidjil-algo commence par essayer de détecter une recombinaison
V(D)J et, si c’est le cas, extrait un identifiant qui lui servira à clusteriser les séquences
en clones. Seuls les 100 clones les plus abondants sont ensuite dénommés (cette
étape-là n’a pas été discutée ici).

Tous les logiciels (IgReC commit 2ec3b7d51, MiXCR version 2.1.12, Vidjil-algo
(old) version 2018.02 et Vidjil-algo commit dcc7643) ont été lancés sur un seul thread
sur une machine équipée de 4 processeurs i7-8650U à 1.90GHz et de 32 Go RAM.

Les résultats pour les recombinaisons V(D)J générées aléatoirement sont présentés
dans la Figure 2. Bien qu’elle construise l’automate de Aho-Corasick, cette version est
plus économe en mémoire que MiXCR mais moins que IgReC qui a une consommation
mémoire semblant linéaire dans le nombre de séquences analysées. À partir de fichiers
d’environ 100 000 séquences, Vidjil-algo est bien plus rapide que ses concurrents,
en particulier la version de l’heuristique que nous présentons ici. Même avec cette
heuristique très rapide, ce nouvel algorithme est très sensible pour détecter des
recombinaisons V(D)J dans des recombinaisons générées aléatoirement, souvent plus
que MiXCR ou IgReC.

103 104

Temps (sec)

vidjil-algo
vidjil-algo (old)

mixcr
IgReCIGH

(2042040 seq.)
0 2000 4000 6000

Memoire (Mo)

99.85 99.90 99.95 100.00

% detection

0 20 40
vidjil-algo

vidjil-algo (old)
mixcr
IgReCIGK

(9720 seq.)
0 500 1000 96.00 98.00 100.00

0 20 40
vidjil-algo

vidjil-algo (old)
mixcr
IgReCIGL

(10010 seq.)
0 500 1000 85.00 90.00 95.00 100.00

102
vidjil-algo

vidjil-algo (old)
mixcr
IgReCTRA
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0 500 1000 1500 80.00 90.00 100.00

102
vidjil-algo

vidjil-algo (old)
mixcr
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0 500 1000 1500 99.85 99.90 99.95
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(2520 seq.)
0 500 1000 25.00 50.00 75.00 100.00

0 2 4 6
vidjil-algo

vidjil-algo (old)
mixcr
IgReCTRG

(1140 seq.)
0 200 400 600 99.90 99.95 100.00

Figure 2. Évaluation de IgReC, MiXCR et Vidjil-algo sur les recombinaisons V(D)J
générées aléatoirement. Attention dans certains cas l’axe des abscisses est
logarithmique pour les graphiques de temps.

Enfin nous lançons les logiciels sur des séquences de longueur 350 à 450, tirées
aléatoirement sur l’alphabet {A, C, G, T} (Figure 3). Le nouvel algorithme confirme
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Figure 3. Évaluation de IgReC, MiXCR et Vidjil-algo sur des séquences aléatoires.

ses bonnes performances et ne reconnâıt aucune recombinaison V(D)J parmi ces
séquences aléatoires, tout comme IgReC et la précédente version de Vidjil-algo.

4. Conclusions
L’étude des recombinaisons V(D)J dans le cadre immunologique ou onco-hématologique
ne nécessite pas toujours d’avoir une dénomination de chaque séquence. Il est utile
de proposer des approches précises et rapides capables de détecter toutes les recom-
binaisons, puis de se concentrer sur la dénomination des clones les plus abondants.

Nous avons proposé une nouvelle heuristique sans alignement, plus rapide que la
précédente d’un facteur près de 10, pour de gros jeux de données, tout en diminuant
légèrement l’espace mémoire requis. Les performances de détection (sensibilité et
spécificité) restent excellentes. Vidjil-algo est ainsi un logiciel extrêmement rapide
pour la détection de millions de recombinaisons V(D)J et la dénomination des clones
les plus abondants. Ce nouvel algorithme sera prochainement intégré à la version
de production de Vidjil-algo et déployé dans la plateforme Vidjil utilisée par des
laboratoires en immunologie et en onco-hématologie [8].
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1Équipe BONSAI, CRIStAL, UMR 9189, Université de Lille, Villeneuve d’Ascq, France
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Abstract
Beaucoup d’algorithmes pour l’analyse des reads courts sont basés sur des approches

heuristiques à base de k-mers. Toutefois, l’utilisation de k-mers exacts peut entrâıner
une perte de sensibilité lorsque les séquences considérées présentent des taux d’erreurs
élevés, comme c’est le cas avec les reads longs. Ce problème est d’autant plus patent
quand on veut comparer des reads entre eux.

Dans l’équipe BONSAI, ont été développées des graines avec erreurs, qui permettent
de retrouver toutes les sous-séquences communes avec un nombre borné d d’erreurs.
Il s’agit des graines 01∗0 [1]. L’idée derrière ces graines est de diviser la séquence à
chercher en blocs de sorte que la distribution des erreurs ne soit plus aléatoire. Ces
graines n’ont jamais été utilisées dans le contexte d’analyse des reads longs. Nous
proposons ici leur utilisation pour la comparaison des reads dans l’objectif d’identifier
des motifs communs entre reads longs.

Notre cas d’application est celui de la détection des séquences des adaptateurs
de séquençage Nanopore. Nous avons montré que l’utilisation de ces graines à la
place de k-mers exacts permettait une reconstruction plus précise des séquences des
adaptateurs.

La méthode que nous proposons repose sur deux étapes: l’identification des k-mers
composant potentiellement l’adaptateur, à l’aide d’une approche par comptage en
tenant compte des erreurs, et la reconstruction de la séquence intégrale de l’adaptateur
en utilisant une méthode d’assemblage gloutonne des k-mers identifiés. Nos résultats
tendent à montrer que l’utilisation de graines avec erreurs permet d’obtenir des
séquences consensus stable pour 80% des échantillons étudiés contre 40% avec les
approches exactes, et ce pour un coût en temps très faible: de l’ordre de 10 à 20
secondes pour un échantillon de 10k reads.
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Abstract
Une question fondamentale en biologie computationnelle est l’extraction de l’infor-
mation évolutive à partir de séquences d’ADN. Cet information concerne les sites de
liaison protéine-protéine et les propriétés mécaniques et allostériques des protéines.
Nous présenterons une approche computationnelle pour l’analyse de co-évolution de
paires de résidus dans les séquences protéiques. Elle a été appliquée à l’étude des
interactions protéine-protéine dans le cadre d’un projet sur la reconstruction du réseau
protéique des génomes viraux. Nous montrerons comment le réseau d’interaction des
10 protéines du génome du virus de l’hépatite C peut être reconstruit à une résolution
de résidus / domaine et nous présenterons brièvement des travaux expérimentaux
récents démontrant la fusion du VHC comme un mécanisme unique. Ce travail fournit
une preuve de concept pour une exploration plus large des processus médiés par
les protéines virales et souligne la coévolution comme un outil précieux pour guider
la conception des inhibiteurs viraux. Dans un deuxième exemple, nous montrerons
comme une généralisation de la méthode, appliquée au virus de l’hépatite B, nous
donne des informations importantes sur les mutations primaires et secondaires de
réponse à des drogues antivirales.
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Abstract
As long-read genome assembly is becoming more and more prevalent, there is an
increasing need to scrutinize the initial data processing steps of long-read genome
assemblers. We found that the quality and efficiency of two key steps, read trim-
ming and overlap computation, still have room for improvement. We propose two
lightweight tools to improve these steps in order to increase results quality, save disk
space, memory and computation time.

Long reads have a high error rate (10-20%) and many tools have been developed
to correct them either with short-reads (hybrid correction) or only with long-reads
(self correction). Long reads may have chimeras, i.e. when a read consists of two
distant regions of the genome that have been incorrectly joined. Chimeras are
typically detected and either split or removed by correction tools. We propose yacrd
(yet another chimeric read detector) to optimize the process of finding chimeric
regions and remove them prior to read correction. Yacrd is based on all-against-all
read mapping and pile-up coverage, and shows significantly improved precision and
running time compared to a state of the art tool (Table 1).

In the overlap-layout-consensus model of genome assembly, an overlap graph
is built, where nodes are reads and edges correspond to overlaps between reads.
Computing the edges of the graph is typically done via an all-versus-all mapping
of the reads, which recovers similar regions (matches), e.g. using the minimap2 [1]
tool. Many similar regions end up being found between reads, but not all of them
are overlaps. Matches may be between inner regions of reads, or be to short to
be usable as overlaps. We developed the fpa tool (Filter Pairwise Alignement) to
perform fast and configurable filtering of all-versus-all read similarities, in order to
keep only matches of interest (e.g. overlaps) see blog post for more details [2]. On a
real Oxford Nanopore dataset, removing matches shorter than 2000 bp save 20% of
disk space without lost of contiguity in miniasm[1] assembly.
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minimap2 + yacrd DAScrubber
wallclock time (seconds) 48.13 365.79
precision 100.00% 87.70%
sensitivity 70.34% 71.16%

Table 1. On synthetic dataset minimap2 + yacrd is 7 times faster than
DAScrubber[3] with same sensitivity and better precision.
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Abstract
Motivation
At first sight, sequencing data using Next Generation Sequencing does not involves
high amounts of sequencing errors. However, looking more closely, those errors have
drastic impacts on assembly tasks. They also bring noise to variant analysis. This
is why error correction is a well-broached subject in genomics. The most efficient
tools are currently based on k-mer spectrums. Surprisingly, few tools are dedicated
to correction of transcriptomics data. Yet, such a data type requires specific develop-
ments. Firstly, contrary to genomics, coverage in transcriptomics is far from being
uniform since genes have different expression levels. This is why this data cannot
be handled with k-mer spectrum techniques. Secondly, eukaryotic transcriptomes
undergo alternative splicing, thus usually convey different mRNA variants for a given
gene. Such alternative sequences create a multiplicity of possible correct k-mers in a
single context, which can be an extremely difficult situation for correctors.
Previous work
There is a plethora of methods ([1, 2, 3]), but at the exception of RCorrector [4],
no tool is dedicated to accurately correcting RNA-seq data. In their publication,
RCorrector’s authors demonstrated the need of specific developments for RNA-seq
by comparing their tool to state-of-the-art, genomics-oriented tools. In addition to
focusing on RNA-seq, RCorrector brings interesting features by considering several
correct k-mers at a position in order to take into account and preserve alternative
splicing events. The idea is to set a local threshold on the k-mer counts in nodes of
a De Bruijn Graph, in order to prune the less covered branches. Such a local k-mer
threshold strategy was also automatically inserted for spurious k-mers removal in
tools such as KisSplice [5]. Finally, more recent methods relying on graph such as
LoRMA [6] are out of the scope of this work since they aim at correcting another
type of sequencing data.
Contribution
We propose a new RNA-seq correcion method inspired by BCOOL [7], that proposes
several enhancements of the graph usage for read correction. In particular, the
BCOOL publication identifies several k-mer spectrum techniques limitations and
tackles them by using De Bruijn graph’s simple paths (unitigs) coverage and topologi-
cal configuration instead of solely k-mers abundances. More into detail, BCOOL first
builds a “reference” De Bruijn Graph with the solid (i.e. which count is higher than
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a threshold) k-mers of the data set. The De Bruijn Graph is then compacted to a
unitig graph [8], and unitigs with a low average k-mer abundance are removed. Then
it uses topological patterns, such as dead ends, to identify the remaining putative
errors and to remove them. Finally, reads are mapped on the cleaned graph and
each read is corrected according to the most parsimonious path. In this work, we
propose a new algorithm that is more suitable for transcriptomic data and a new
tool following the BCOOL paradigm to correct transcriptomics data: BCOOL-Trans.
This method takes into account in the correction process the possible occurrence of
variants in the data set, such as alternative splicing, alternative start or end of the
transcription, genomic variants. We propose the following new features, first on the
graph construction and cleaning:

• Work with all k-mers of the original data set instead of applying a k-mer based
threshold before constructing the De Bruin Graph. This seems realistic on a
transcriptome (graphs can be built from dozens of billions k-mers [9]), and
allows not to lose any k-mer a priori because of local shallow coverage. Then
correction is performed only by relying on the topology and relative abundance.

• Let be n a node of the graph of unitigs. n is a dead-end if there is no outgoing
node n′ from n. Use large (ideally larger than half the size of reads) k-mers
so that most errors create dead-ends in the graph while SNPs or alternative
splicing create bubbles [5]. Correction then focuses on dead-ends.

• In BCOOL’s algorithm, a dead-end is removed if it is shorter than a threshold.
In BCOOL-Trans, we propose to use the relative coverage for dead-ends instead
of length.

Contrary to Rcorrector, the coverage of a dead-end is computed using the average
k-mer coverage of a unitig. It means that we use a less local information to conserve or
remove parts of the graph. This way, we can keep short but biologically sound events
if they are supported enough in the data-set. This can be the case for alternative
start or end of the transcription, or variants that are not very well covered. Then,
the modification of the mapping algorithm to fit the transcriptomics data can also
bring improved results:

• In BCOOL, the mapping strategy is greedy. However, intricated bubbles and
repeats are common in a transcriptome graph. A greedy choice could frequently
lead to suboptimal or erroneous correction in such complex hubs. We propose
to explore more deeply the different possible paths before to make a decision.

• Handle paired-end reads mapping so that if two reads can be linked by a single
unitig, we can output paired-end read merging such as proposed for genomics
(for instance [10]). Those precise, longer reads can be useful to improve various
analysis steps or compensate for tools that do not handle paired-end data.

The expected outcome is that BCOOL-Trans introduces less errors during the cor-
rection phase and better reckognizes alternative variants from sequencing errors.
Moreover BCOOL-Trans is designed to preserve genomic SNPs and indels whithin
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transcripts that are biologically meaningful.

A second contribution, still a work in progress, is to demonstrate whether ex-
tremely accurate correction of short reads benefits to long read sequencing correction
(TGS). Those long reads are reknown for their high and difficult error profile. Many
tools from the litterature propose to use short reads for their correction. One rea-
son is that reads such as those provided Oxford Nanopore Technologies contain
non-systematic errors. Thus they require a thirdparty for their correction, this is
why some tools use short read mapping onto long reads to perform correction [11].
Another way is to first assemble short reads into contigs, to be used as templates
for correction [12, 13]. Other works propose to work directly on an assembly graph
made of the short reads [6, 14, 15]. It is likely that errors impact the assembly
phases. However, the accuracy of the short reads used for correction was never
questioned in any of these works. We would like to assess the impact of correction
with BCOOL-Trans as a prior to a good long read hybrid correction.
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Abstract
Beaucoup d’algorithmes pour l’analyse des reads courts sont basés sur des approches

heuristiques à base de k-mers. Toutefois, l’utilisation de k-mers exacts peut entrâıner
une perte de sensibilité lorsque les séquences considérées présentent des taux d’erreurs
élevés, comme c’est le cas avec les reads longs. Ce problème est d’autant plus patent
quand on veut comparer des reads entre eux.

Dans l’équipe BONSAI, ont été développées des graines avec erreurs, qui permettent
de retrouver toutes les sous-séquences communes avec un nombre borné d d’erreurs.
Il s’agit des graines 01∗0 [1]. L’idée derrière ces graines est de diviser la séquence à
chercher en blocs de sorte que la distribution des erreurs ne soit plus aléatoire. Ces
graines n’ont jamais été utilisées dans le contexte d’analyse des reads longs. Nous
proposons ici leur utilisation pour la comparaison des reads dans l’objectif d’identifier
des motifs communs entre reads longs.

Notre cas d’application est celui de la détection des séquences des adaptateurs
de séquençage Nanopore. Nous avons montré que l’utilisation de ces graines à la
place de k-mers exacts permettait une reconstruction plus précise des séquences des
adaptateurs.

La méthode que nous proposons repose sur deux étapes: l’identification des k-mers
composant potentiellement l’adaptateur, à l’aide d’une approche par comptage en
tenant compte des erreurs, et la reconstruction de la séquence intégrale de l’adaptateur
en utilisant une méthode d’assemblage gloutonne des k-mers identifiés. Nos résultats
tendent à montrer que l’utilisation de graines avec erreurs permet d’obtenir des
séquences consensus stable pour 80% des échantillons étudiés contre 40% avec les
approches exactes, et ce pour un coût en temps très faible: de l’ordre de 10 à 20
secondes pour un échantillon de 10k reads.
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Abstract
Third generation sequencing technologies such as Pacific Biosciences and Oxford Nanopore allow the

sequencing of long reads of tens of kbs, that are expected to solve various problems, especially in the

genome assembly field. However, they also reach high error rates of 10 to 30%, and thus require efficient

error correction. As first long reads sequencing experiments produced reads displaying error rates higher

than 15% on average, most methods relied on the complementary use of short reads data to perform

correction, in a hybrid approach. However, these sequencing technologies evolve fast, and now manage to

produce long reads displaying error rates around 10-12% on average. As a result, correcting the long reads

solely based on the information they contain, in a self-correction approach, is now an efficient alternative.

Various self-correction methods were thus recently developed, but most of them either face scalability issues

or require deep long reads coverage. We introduce LoRSCo, a new method for the self-correction of long

reads that combines different efficient approaches from the state-of-the-art. Our experiments show that

LoRSCo compares well to the state-of-the-art in terms of quality of the results, while achieving globally

higher throughput, and low memory consumption. LoRSCo is available on GitHub: https://github.com/

morispi/LoRSCo.

Keywords
long reads — correction — self-correction

1. Introduction

Third generation sequencing technologies Pacific Biosciences and Oxford Nanopore became
widely used since their inception in 2010. In contrast to what second generation sequencing
technologies offer, they allow the sequencing of much longer reads (tens of kb on average,
and up to 882 kb) that are expected to solve various problems, most specifically in the
genome assembly field. These long reads are however very noisy, reaching error rates of
10 to 30%, whereas short reads usually display error rates around 1%. The error profiles
of these long reads are also much more complex than those of the short reads, as they are
mainly composed of insertions and deletions, while short reads’ are mostly composed of
substitutions. As a result, efficient error correction is a mandatory step before making use of
these reads in any kind of application.

As first long reads sequencing experiments resulted in highly erroneous long reads
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(15-30% error rates on average), most of the efficient error correction methods relied on a
hybrid strategy, using additional short reads data. Third generation sequencing technologies
however evolve fast, and now manage to produce long reads reaching error rates of 10-12%
on average. However, these error rates do not seem to significantly decrease anymore. As a
result, error correction is still needed, but a self-correction approach can now efficiently be
adopted, thus totally getting rid of the short reads data.

1.1 Related works
Due to the fast evolution of third generation sequencing technologies, and to the lower error
rates they now reach, various efficient self-correction methods were recently developed.
Most of them share the common first step of computing overlaps between the long reads,
whether it is via mapping (Canu [1], MECAT [2], HALS [unpublished]) or via alignment
(PBDAGCon [3], daccord [4]). Most method then build a directed acyclic graph (DAG) from
the alignments, in order to compute consensus (PDAGCon, Canu, MECAT, HALS), after
recomputing actual alignments of mapped regions, if necessary. Other methods rely on de
Bruijn graphs, either built from small windows of the alignments (daccord), or directly from
the long reads sequences with no alignment or mapping step at all (LoRMA [5]). However,
methods relying on direct alignment of the long reads consume large amounts of time and
memory, and therefore cannot scale to large genomes. Moreover, methods solely relying on
de Bruijn graphs and avoiding the alignment step altogether usually require very deep long
reads coverage, as the graphs are built for large values of k. Therefore, methods relying on
overlap computing via a mapping approach seem to provide the most interesting results at
the present times.

1.2 Contribution
We present LoRSCo, a new self-correction method that combines different approaches from
the state-of-the-art into an efficient strategy. Like most efficient methods, LoRSCo starts
by computing overlaps between the long reads using a mapping approach. This way, only
matched regions further need to be aligned in order to compute consensus for a given read.
Like in existing methods, the consensus is computed with the help of a DAG. However,
the alignment of matched regions is performed via a multiple sequences alignment strategy
based on partial order graphs (POA) [6]. This allows LoRSCo to directly build the DAG
during the multiple alignment of matched regions, instead of performing alignment and
graph construction separately. This multiple sequences alignment strategy also benefits from
an efficient heuristic, based on k-mers chaining, allowing to reduce the time and memory
footprints of the method, with little to no effect on the quality of the results. In a second step,
once the consensus of a given read has been computed, LoRSCo makes use of local de Bruijn
graphs to polish the corrected long read. This allows to refine the correction by removing
remaining errors in weakly supported regions, that are, regions containing weak k-mers,
and thus, to further reduce the error rate. Our experiments show that LoRSCo achieves
comparable throughput and quality compared to state-of-the-art long read self-correction
methods.

2. Methods

In order to initiate correction, LoRSCo starts by computing overlaps between the long reads
via a mapping approach, using Minimap2 [7]. This allows LoRSCo to save both time and
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memory, as resource-consuming alignments then only have to be computed between matched
regions. After the overlapping step, all the reads are processed independently. For the sake
of simplicity, we thus present the correction process for a single read.

Given a read A to correct, we define an alignment pile for A as a set of reads overlapping
with A. This concept was originally introduced in daccord, but we slightly alter it for our
purpose. Formally, we thus define an alignment pile as a set of tuples (R,Ab,Ae,Rb,Re,C)
where R is a long read id, Ab and Ae represent respectively the start and the end positions of
the alignment on A, Rb and Re represent respectively the start and the end positions of the
alignment on R, and C indicates whether R aligns forward (0) or reverse complement (1) to
A. In its alignment pile, the read A is called the template read. The alignment pile of a given
template read A thus contains all the necessary information for its correction, and is retrieved
by parsing the Minimap2 output file.

As processing whole alignment piles at once can still be resource consuming, daccord
also underlined the interest of dividing alignment piles into windows. A window from an
alignment pile is defined as follows. Given an alignment pile for a template read A, a window
of this pile is a couple (Wb,We), where Wb and We represent respectively the start and the
end positions of the window relatively to A, and such as:

• 0≤Wb≤We < |A|, i.e. the beginning and end positions of the window define a factor
of the template read A. We refer to this factor as the window’s template.

• We−Wb+1 = L, i.e. windows have a fixed size.

• ∀i, Wb ≤ i ≤We, A[i] is supported by at least C reads of the pile (including A), i.e.
windows have a minimum coverage threshold.

In the case of daccord, this window strategy allows to build local de Bruijn graphs for
small regions, and thus use small values of k, in order to overcome the high error rates
of the long reads, which causes issues when using large values of k. In our case, as we
seek to correct long reads by computing multiple alignment of sequences, working with
windows allows to save both time and memory, since the sequences that need to be aligned
are significantly shorter. Each window is then processed independently during the next steps.

Given a window from an alignment pile for a read A, LoRSCo seeks to compute its
consensus in order to correct the window’s template. The processing of a window is per-
formed in two distinct steps. First, the window is cleaned in order to remove sequences
that deviate significantly from the window’s template, in order to avoid the introduction of
errors in the correction. Second, the sequences from the cleaned window are aligned using
POA, a multiple sequences alignment strategy based on partial order graphs, in order to
compute consensus, and correct the window’s template. Unlike other methods that compute
1-versus-1 alignments between the read to be corrected and other reads mapping to it, and
then build a DAG to compute consensus, this strategy allows LoRSCo to directly build the
DAG, during the multiple alignment. Indeed, the DAG is first initialized with the sequence of
the window’s template, and is then iteratively enriched by aligning the other sequences from
the window, until it becomes the final graph. Classically, like in other DAG based methods,
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the consensus of the window is then computed by following the highest weight path of the
graph. This multiple sequences alignment strategy also benefits from an efficient heuristic,
based on k-mers chaining, allowing to decompose the global problem into smaller instances,
thus reducing both time and memory consumption.

Once the consensus of a window has been computed, the window’s template needs to
be replaced by its correction on the template read which is being processed. To this aim,
the window’s template is first locally aligned to the consensus of the window, with dynamic
programming. This allows to retrieve the factor of the consensus which actually represent
the corrected window. Indeed, as long reads mainly contain insertions and deletions errors, it
is more than likely that the consensus computed from a window actually spans outside of the
window’s template. In this case, not trimming the consensus on the parts that do not align
to the window’s template would cause over-correction of the read. The original window’s
template is then replaced by its correction on the template read.

After processing all the windows of the alignment pile of a given template read A, a
few erroneous bases might remain on the corrected long read. This might be the case
especially on windows’ extremities, as only factors of the windows’ templates are sometimes
corrected, due to the local alignment between windows’ templates and windows’ consensuses.
Moreover, a few weakly supported k-mers can also be present in the correction of a window’s
template, despite the consensus computation. This might happen in cases where the coverage
depth of the window is particularly low. In both cases, in order to get read of the remaining
sequencing errors, these regions are further polished with the use of local de Bruijn graphs.
To this aim, LoRSCo searches for sketches of n (usually, n = 3) solid k-mers flanking these
regions. A de Bruijn graph is then built from the window of the alignment pile starting on
the leftmost solid k-mer and ending on the rightmost solid k-mer flanking the region. The
de Bruijn graphs are thus local, and a small k can be used, allowing to overcome the issues
encountered when using large k values, due to the high error rate of the long reads. For a
given region to polish, the associated graph is then traversed in order to find a path between
the left and the right solid k-mers, dictating a correction.

3. Results

We compare LoRSCo against state-of-the-art error correction methods Canu, daccord,
LoRMA, and MECAT. We voluntarily excluded hybrid error correction tools from the
comparison, as we believe it makes more sense to only compare self-correction tools against
each other. Results on a 50x simulated E.coli dataset are given in Table 1, and results on a
50x simulated S. cerevisiae dataset are given in Table 2. These results show that LoRSCo
compares well to the state-of-the-art, achieving comparable quality, and higher throughput
than most methods, while consuming reasonable amounts of memory. Runtime, however,
remains the biggest issue in the current implementation, further optimization of the method
is thus required.

4. Conclusion

We introduced LoRSCo, a new method for the self-correction of long reads, combining
efficient approaches from the state-of-the-art, such as overlap computation via a mapping
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Corrector Throughput Error rate Deletions Insertions Substitutions Runtime Memory peak (MB)
Original 232,013,329 12.2674 2.6403 8.7841 0.8430 N/A N/A

Canu 173,134,629 0.5841 0.1563 0.4524 0.0272 19 min 20 3,623
daccord 217,669,319 0.0166 0.0023 0.0061 0.0097 38 min 13,559
LoRMA 125,825,166 9.4315 0.4074 7.3781 2.3844 37 min 31,902
MECAT 192,580,040 0.1118 0.0970 0.0243 0.0010 4 min 2,130
LoRSCo 203,018,368 0.1728 0.0746 0.1060 0.0084 3 h 19 min 3,927

Table 1. Results on the simulated E. coli dataset.

Corrector Throughput Error rate Deletions Insertions Substitutions Runtime Memory peak (MB)
Original 617,531,933 12.2835 2.6459 8.7943 0.8433 N/A N/A

Canu 477,048,097 0.6294 0.1715 0.4811 0.0330 55 min 3,702
daccord 579,339,282 0.0451 0.0080 0.0203 0.0209 1 h 51 min 31,774
LoRMA 339,182,738 9.6010 0.4124 7.4299 2.5086 2 h 41 min 31,480
MECAT 510,446,777 0.1493 0.1279 0.0334 0.0022 11 min 4,275
LoRSCo 537,232,951 0.3077 0.1502 0.1596 0.0269 10 h 48 min 8,487

Table 2. Results on the simulated S. cerevisiae dataset.

strategy, alignment piles, multiple sequences alignment, and local de Bruin graphs. While
current results are promising in terms of throughput and quality, the overall runtime of the
method remains an issue. Future works should therefore mainly focus on this aspect. In
particular, the multiple sequences alignment, which is the bottleneck of the current imple-
mentation, could be performed with other algorithms, to achieve lower time consumption.
The method should also be tested on real long reads, both from Pacific Biosciences and
Oxford Nanopore, to ensure it also performs well on such data.
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Abstract
Pacific Biosciences and Oxford Nanopore long reads were rapidly adopted in a broad specter of applications.

However, due to their high error rates, error correction is a mandatory step before being able to process

these reads efficiently. As a result, various error correction methods were developed for long reads, whether

they make use of additional short reads (hybrid correction) or not (self-correction). As the quality of the

error correction directly impacts downstream applications, developing methods allowing to evaluate error

correction tools is a crucial need. To date, only one tool proposes such an assessment of error correction

methods. However, it suffers from scalability issues when assessing correction for large datasets. We

present ELECTOR, a new tool that allows the evaluation of long read error correction methods, provides

relevant metrics, and overcomes the scalability issues of the previous tool. Our experiments show that

ELECTOR is several orders of magnitude faster than the previous tool, while providing comparable results,

and also additional metrics. ELECTOR is an open-source software available on GitHub: https://github.

com/kamimrcht/ELECTOR.

Keywords
long reads — correction — evaluation

1. Introduction

Pacific Biosciences (PB) and Oxford Nanopore (ONT) long reads, despite their high error
rates and complex error profiles, were rapidly adopted for various applications. In particular,
they are expected to help solving problems faced with short reads in the genomic assembly
field. To overcome these high error rates, a plethora of error correction methods directly
targeted at long reads were developed. These methods either aim at correcting the long
reads solely based on the information contained on their sequences (self-correction), or use
complementary short reads, relying on their important coverage depth and their low error
rate (hybrid correction).

As the quality of the error correction has huge impacts on downstream processes, devel-
oping methods allowing to evaluate error correction tools with precise and reliable statistics
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is therefore a crucial need. However, works introducing new error correction methods usually
evaluate the quality of their tools based on how the corrected long reads can be realigned to
the reference. Despite being interesting, this information remains incomplete, and is likely
not to mention poor quality reads, or regions to which it is difficult to align. In this work
we propose ELECTOR, a novel tool that enables the evaluation of long read hybrid and
self-correction methods, that provides relevant metrics and that scales to large datasets.

To date, LRCstats [1] was the only method able to realize long read correctors evaluation.
LRCstats proposes a three-way alignment strategy that relies on pairwise alignments of both
corrected and original versions of each read to the reference. LRCstats provides reads error
rate before and after correction, as well as the detailed counts of every type of error. However,
only studying the error rate of the reads is not a satisfying indication of the corrector’s
behaviour, as it does not report information about the putative insertions of new errors by the
corrector. LRCstats is well-tailored for experiments with long reads of a few kilobases and
for medium throughputs of less than 200 Mb. However we show that it can be more time
and/or memory consuming than the actual error correction methods on larger experiments or
reads longer than 10kb.

2. Contribution

In order to cope with these limits, we designed ELECTOR to 1/ compute more relevant
metrics on long read correction; and 2/ scale to very long reads and large sequencing experi-
ments. ELECTOR is directly compatible with a wide range of state-of-the-art error correction
tools, without needing the user to perform any pre-processing. Therefore, it simply takes as
input a set of reads, their corresponding corrected versions, and the corresponding reference
genome. Contrary to LRCstats, it also includes additional steps performing and assessing
corrected reads remapping and assembly, respectively using BWA-MEM [2] and Miniasm
[3]. Output statistics include average identity of the alignments and genome coverage for
the remapping part, and number of contigs, number of breakpoints, NGA50 and NGA75 for
the assembly part. It is also meant to be a user-friendly tool, that delivers its results through
different output formats, such as graphics than can be directly integrated to the users’ projects.

First of all, the three-way alignment paradigm used in LRCstats is replaced by a multiple
alignment of triplets of sequences in ELECTOR. Such an approach allows to efficiently
compare the three different versions of each read: the uncorrected version, as provided by
the sequencing experiment or by the reads simulator, the corrected version, as provided by
the error correction method, and the reference version, that represents a perfect version of
the original read, on which no error would have been introduced.

This choice of using a multiple alignment strategy allows ELECTOR to provide a wide
range of metrics that assess the actual quality of the correction. In particular, ELECTOR is
able to compute the recall, which is the rate of erroneous bases correctly modified (corrected)
by the corrector, the precision, which measures the ability of the corrector not to add new
erroneous bases, and the overall correct bases rate for each read. In addition to these classical
metrics, ELECTOR also displays other results including GC content before and after cor-
rection, number of trimmed and/or split corrected reads, and mean missing size in those reads.
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Secondly, we propose solutions to tackle scaling issues and thus to offer a faster and
more scalable evaluation pipeline, which benefits large genomes processing. In particular,
we coupled an implementation of multiple sequence alignment (MSA) using partial order
graphs [4] to a seed strategy comparable to MUMmer [5] or Minimap [3]. This so-called
seed-MSA strategy allows to divide the multiple sequence alignment problem, known to be
time and memory consuming, into smaller instances. In addition to bringing an interesting
methodological contribution, this allows to achieve a significant gain in resources footprint.

ELECTOR can be used on simulated data generated from state-of-the-art long reads
simulation tools, such as NanoSim [6] or SimLoRD [7], on which introduced errors are
precisely known, but also on real data. In the case of simulated data, the reference version of
a given read is easily retrieved by parsing the files describing the introduced errors, generated
by the simulator. In the case of real data, the reference sequences are retrieved by aligning
the uncorrected reads to the reference genome, using Minimap2 [unpublished]. Only the best
hit for each read is kept, and used to determine the corresponding reference sequence. In
the case a read cannot align to the reference genome and thus cannot produce a reference
sequence, this read is simply excluded from the analysis. In both cases, ELECTOR retrieves
the reference versions of the reads by itself.

3. Results

Using bacterial and eukaryotic read sets, we validate our approach and demonstrate that 1/
our heuristic for multiple alignment of long reads provides results that are extremely similar
to the original partial order graph alignment, while being several orders of magnitude faster,
2/ ELECTOR provides sound metrics in comparison to the state-of-the-art.

In order to validate our speedup strategy for multiple sequence alignment, we simulated
two datasets from the E. coli genome, with SimLoRD. The first was composed of reads with
a 1kb mean length, a 10% error rate and a coverage of 100X and the second was composed
of reads with a 10kb mean length, a 15% error rate and a coverage of 100X. The reads from
the two datasets were corrected with MECAT [8] with default parameters. The correction
was then assessed both with MSA and seed-MSA strategies. Results of our experiments
show that classic MSA and seed-MSA approaches only differ by a few digits in the presented
metrics (recall, precision and correct bases rate of corrections). However, using seed-MSA, a
substantial gain in time is achieved: while the classic MSA strategy has a subcubic runtime
with respect to the read length and the average number of predecessors of nodes in the partial
order graph, seed-MSA limits this drawback by working on small instances. As an example,
for the second dataset, MSA and seed-MSA compute respectively a recall of 84.505% and
84.587%, a precision of 88.347% and 88.278%, and a correct bases rate of 95.290% and
95.250%, in 107 hours for the classical MSA approach, and in 42 minutes for the seed-MSA
approach.

In order to validate the accuracy of ELECTOR’s metrics, we then used SimLoRD to
simulate three other datasets, respectively from A. bayli, E. coli and S. cerevisiae. Each
of these datasets was composed of reads with a 8kb mean length, a 18% error rate, and a
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coverage of 20X. We corrected these datasets with various long read correctors, and assessed
the correction results using both LRCstats and ELECTOR. Results of these experiments
show that the metrics computed by ELECTOR are comparable to LRCstats outputs, but also
allow us to highlight several novelties. For instance, on the long reads of the A. baylyi dataset
corrected with Nanocorr [9], LRCstats reports an error rate of 0.005777 and ELECTOR
reports a correct bases rate of 0.99534, which are in accordance, but ELECTOR only reports
a recall of 0.97992, meaning that Nanocorr failed to correct 2% of the erroneous bases.
Computation of these results is also more time-saving than LRCstats. In particular, on the E.
coli dataset, LRCstats took an average of 3h50min to evaluate the quality of the correction of
the different tools, while ELECTOR only took an average of 25 minutes.

Both hybrid and self correctors are included in this benchmark. Although our goal is not
to debate on the comparison of correction methods efficiency, this is the first time several
self-correctors appear assessed independently of a new error correction tool presentation.

4. Conclusion

We propose a novel and open-source method for fast long read correction assessment. Both
hybrid and self correctors are compatible. Our software ELECTOR outputs a wide range of
metrics to finely understand the behavior of correction tools, even on large experiments. We
compare ELECTOR to a previous work for correctors evaluation and show that it allows a
faster and more extensive assessment of long read correction on several species.

Conclusions about pros and cons of hybrid vs self-correction and comparisons of correc-
tion paradigms vary a lot according to publications. At the moment, no coherent vision is
proposed for long read correction and the field lacks a global study that goes over the sum of
individual publications. ELECTOR could thus be a perfectly fitted basis for such benchmark
study.
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read simulator based on statistical characterization, 2017.

4

48/49



ELECTOR
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